
Le charme discret des neutrinos

Hubert Reeves

1932 Découverte du neutron.

- Durée de vie : vingt minutes
- Se désintègre en un proton (+)
- Et un électron (-)
- Mais .. Problème !

Wolfgang Pauli

Invente une nouvelle particule
Pas de charge électrique
Très faible masse (un millionième de celle de l'électron)

Discrète.

Presqu'à la vitesse de la lumière.

Le « neutrino »

Le neutrino est détecté en 1956 (réacteurs nucléaires)

• Astronomie des neutrinos

La particule la plus abondante du cosmos .

Dans chaque mètre cube

d'espace

Neutrino: 450 millions Photons: 400 millions Electrons, protons: 1

Discrétion des neutrinos.

• Désavantage: difficiles à détecter

Atténuer un flux de photons : une feuille de papier

Atténuer un flux de neutrinos : écran de plomb de plusieurs années-lumière .

• Avantage : nous parviennent de lieux opaques

Discrétion des neutrinos.

Soleil : la lumière (photons) nous vient de la surface.

Les neutrinos nous arrivent du centre

Télescope à neutrinos

 Des centaines de milliers de litres de liquide détecteur pour en détecter cinq par jour

Origine de l'énergie solaire

Transformation de l'hydrogène en hélium Hans Bethe 1938

Quinze millions de degrés.

Emission de neutrinos

Les neutrinos solaires

- Détectés en 1962 dans une mine du Dakota
- Ron Davis

Confirment l'origine nucléaire de l'énergie solaire .

Luminosité neutrinique du Soleil

Neutrinos : 5 %Photons : 95 %

• Soixante milliards de neutrinos nous traversent par seconde . .

Le Soleil neutrinique ne se couche pas

- · Visible la nuit
- Pas d'éclipse .

Matière et antimatière

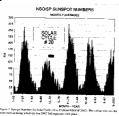
Pour chaque particule il existe une antiparticule .

Électron ---- antiélectron Proton--- antiproton Neutrino--Antineutrino .

Etc

Le Soleil émet des neutrinos et pas des antineutrinos

• Il est composé de matière et non pas d'antimatière.



Observatoire solaire (depuis quarante ans)

Traverse le Soleil en trois secondes (les photons en un millions d'années) Moniteurs de ce qui se passe à l'intérieur du Soleil.

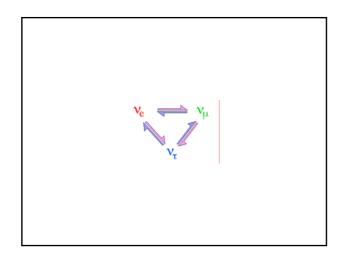
Le flux est constant

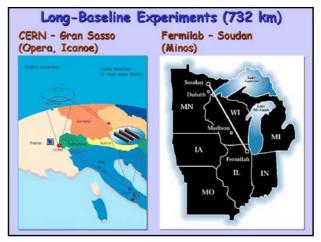
• Pas de variations au long du cycle de onze ans.

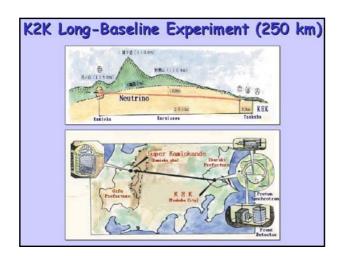
Les neutrinos solaires

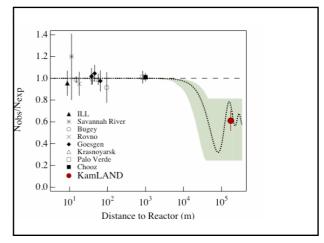
• Détectés en 1962

Confirment l'origine nucléaire de l'énergie solaire .


Problème : il y en a trois fois moins que prévu . Pourquoi?


Trois variétés


- 1) neutrino électronique
- 2) neutrino muonique
- 3) neutrino tauique


Oscillation des neutrinos

Peuvent se transformer les uns dans les autres
Comme les pokemons!

Sudbury

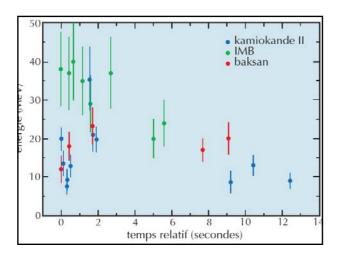
- Solution du problème solaire .
- Nouvelle physique

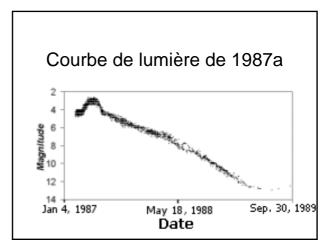
Le rapport émission neutrinique sur émission photonique augmente avec la température centrale

• Soleil : 5 %

• Géantes rouges : les neutrinos

dominent

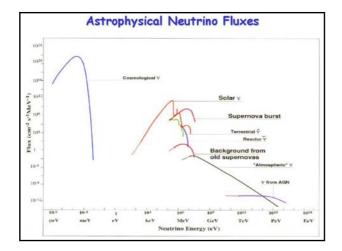

• Supernova : 99.99 %


Le 23 février 1987 vers 10h00 une supernova éclate dans le grand Nuage de Magellan

Distance cent soixante neuf mille années-lumière.

Brille comme trente millions de Soleil pendant quelques heures.

Quelques neutrinos sont reçus à la Terre trois heures avant les photons



Luminosité neutrinique des supernovae

- Pendant les premières minutes la luminosité neutrinique de la supernova est dix mille fois plus élevée que sa luminosité photonique.
- Elle comparable à celle
- · de cent millions de galaxies
- Ou celle de dix milliards de milliards de Soleil!

Distribution d'énergie des neutrinos cosmiques

Propriétés

- Au début de l'univers : autant de matière que d'antimatière
- Matière + antimatière => lumière
- Univers de pure lumière!

Où est passée l'antimatière?
matière et antimatière n'ont pas
exactement le même
comportement!
Violation de CP

Enigme

- Si les populations avaient été strictement égales, l'univers serait de pure lumière.
- Origine de ce faible supplément ?
- La réponse pourrait venir des propriétés des neutrinos

Energétique des supernovae

- Energie libérée: 3x10⁵³ ergs
- =0.17 M(solaire)c²
- Neutrinos =99%
- Energie cinétique = 1 %
- Photons = 0.01 % (comparable à la luminosité de la galaxie-hôte!)

Géoneutrinos

- La Terre est une source d'antineutrinos
- · Provenant de la désintégration
- De l'uranium (235 et 238)
- Et du calcium (40) laboratoire Kamland au Japon

•

.

Tomographie de la Terre

- La détection du K-40
- Spectre en énergie des neutrinos .
- Permettrait de localiser les sources du magnétisme.

Emission thermique de la Terre

- Calculée à partir de la température superficielle = 30 à 40 TeV
- Emission radioactive (composition de chondrite) = 18 TeV
- Reste : impact météoritique , décantation gravitationelle .

Antarès 2009

- Au large de Toulon
- Moniteurs des Supernova
- A l'abri de la Terre
- Séquence de neutrinos et d'antineutrinos ...

Influence de la densité d'électrons (effet MSW)

Négligeable à basse énergie (E(nu) <5MeV)

(oscillation dans I 'espace vide)
Important à E(nu) >5MeV
(oscillation dans I 'espace vide + densité des électrons solaires)

Masse des neutrinos

- On les a cru longtemps de masse nulle (comme les photons)
- En fait ils ont une masse très faible (moins d'un électron-volt) .
- Un millionième de la masse des électrons
- Moins d'un milliardième de celle des protons

Masse des neutrinos

- Atmosphérique (m(ν _e) m (ν (μ)) > 0,04 eV
- Structure cosmique :m < 0.9 ev
- -m(v(e)) < 2.8 eV (Tritium)

Echapper à l'hécatombe cosmique!

- Big Bang : réaction en équilibre :
- autant de particules que d'antiparticules .
- Refroidissement = annihilation de la matière (p, n, e, nu)
- Résultat : univers de pure lumière!!!
- Mais

- Résultat : léger excès de matière (1/1000,000,000!)
- Annihilations et ...reliquat de matière: nous!
- Trop élevé pour provenir du secteur des quarks

Suffisant dans celui des neutrinos?

Borexino 2008

- Détection des neutrinos solaires
- Du Be-7 (0.862 MeV)
- fraction survivante= f(Be-7) = 56%
 Du B-8 (jusqu'à 14 Mev)
- f(B-8) = 35 %

Neutrinos et cosmologie.

- Masse des neutrinos :
- Nu(e -) < 2.8 eV (Tritium)
- Structures cosmiques <0.9 eV (moyenne)
- $0.6x10^{-3} < Omega(nu) < 0.02$
- Il faudrait un nu avec m(nu) > 10eV pour constituer la matière sombre

Borexino

- Détection des neutrinos du Be-7 et B-8
- Pour B-8 (énergie moyenne= 8.6 MeV)
 P= probabilité de survie = 0.35+-0.10
- Pour Be-7 (0.862 MeV)
- P= 0.56+-0.10
- Effet MSW plus important à +haute énergie .

Les neutrinos solaires

Problème : il y en a trois fois moins de neutrinos que prévu .

Pourquoi?

La réponse est venu trente ans plus tard Kamiokande et Sudbury.

Rayonnement fossile des neutrinos

- La théorie du Big Bang prévoit l'émission d'un rayonnement de neutrinos de très faible énergie vers la première seconde.
- Impossible à détecter aujourd'hui .
- A confirmer

Matière et antimatière dans l'univers

- Au début de l'univers les populations de particules et d'antiparticules étaient « presqu »égales
- Un surplus de une unité dans un milliard pour les particules!
- Plus tard particules et antiparticules se sont s'annihilées, se transformant en lumière.
- Aujourd'hui l'antimatière a disparu.
- Il reste de la matière et de la lumière.

.

La vie des étoiles: Transformation de masse en énergie . $E = \Delta mc^2$

Vecteurs: gravité et nucléaire. Emission : photons et neutrinos .

Luminosité neutrinique des supernovae

- L(neutrinos) =3x10⁵³ erg/3sec
- = $3x10^{19}L$ (photonique solaire)
- = 3x108 galaxies!